a2 United States Patent

Spracklen et al.

US009081536B2

(10) Patent No.: US 9,081,536 B2
(45) Date of Patent: Jul. 14, 2015

(54)

(71)
(72)

(73)

")

@

(22)

(65)

(63)

(1)

(52)

PERFORMANCE ENHANCEMENT IN
VIRTUAL DESKTOP INFRASTRUCTURE

(VDD

Applicant: VMware, Inc., Palo Alto, CA (US)

Inventors: Lawrence Spracklen, Boulder Creek,
CA (US); Banit Agrawal, Sunnyvale,
CA (US); Rishi Bidarkar, Sunnyvale,
CA (US)

Assignee: VMware, Inc., Palo Alto, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/513,167
Filed: Oct. 13,2014

Prior Publication Data

US 2015/0035724 Al Feb. 5, 2015

Related U.S. Application Data

Continuation of application No. 13/663,175, filed on
Oct. 29, 2012, now Pat. No. 8,862,695.

Int. Cl1.

HO4L 12726 (2006.01)

GO6F 3/14 (2006.01)

HO4N 19/89 (2014.01)

GO6F 9/44 (2006.01)

HO4N 19/895 (2014.01)

U.S. CL

CPC GO6F 3/1462 (2013.01); GOGF 3/1415

(2013.01); GOGF 3/1454 (2013.01); GO6F
9/4445 (2013.01); HO4L 43/0829 (2013.01);
HO4N 19/00939 (2013.01); HO4N 19/895
(2014.11)

(58) Field of Classification Search
CPC .ottt HO4L 43/0829
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,626,587 B1* 12/2009 de Waaletal. ... 345/536
2006/0230156 Al* 10/2006 Shappiretal. 709/227
2009/0222462 Al* 9/2009 Alpern et al. 707/100

. 709/203
700223
. 700/247

2010/0161711 Al* 6/2010 Makhijaetal. .
2010/0211663 Al* 82010 Barboyetal. ..
2010/0306413 Al* 12/2010 Kamay

2011/0154172 Al1* 6/2011 Leeetal. ... 714/819
2011/0179106 Al* 7/2011 Hulseetal. 709/203
2012/0096461 Al* 42012 Goswamietal. 718/1

2012/0304168 Al* 11/2012 Raj Seeniraj etal. 718/1
2012/0324358 Al* 12/2012 Jooste 715/733
2013/0132971 Al* 5/2013 Assuncao et al. ... 718/105
2013/0141642 Al* 6/2013 Wuetal. 348/441

* cited by examiner
Primary Examiner — Lashonda Jacobs

(57) ABSTRACT

In one embodiment, a method displays images from a remote
desktop of a desktop GUI on a client device. The method
receives a plurality of image blocks for a frame update of an
image of the desktop GUI being displayed on the client
device. The remote desktop is being run on a host. The client
device determines that one or more missing image blocks
have not been received for the frame update and determines if
the frame update should be performed without the one or
more missing image blocks. If the frame update of the desk-
top GUI should be performed without the one or more miss-
ing image blocks, the client device performs the frame update
of the desktop GUI using the plurality of image blocks with-
out using the one or more missing image blocks.

20 Claims, 7 Drawing Sheets

200
V 2

202 eceive packets from host remote desktop
manager for a frame update for the remote
desktop

20§/f4 Determine that packets are missing

Send a request for
the missing
210\/\ packets to host
remote desktop

manager

!

Receive the
missing packsts
and display the
212 A frame update using

N image blocks in
the just received
missing packets
and the previously
received packets

Display the
frame update
using the
image blocks

in the

203‘/\ received

packets
without the
missing image

blocks

US 9,081,536 B2

Sheet 1 of 7

Jul. 14, 2015

U.S. Patent

I E

91T
Jageuew

2oUBWI0] 494

41
Jogeuew
do1ysep

a0WaJ JuUsl |9

orl
fe|dsiq

70T
Wa 19

D

901
YJOMI8N

vIT
JeSeueuw

do1ysep
910WsJ 1SOH

80T
dolysep ajouwsy

0T
1SOH

U.S. Patent Jul. 14, 2015 Sheet 2 of 7 US 9,081,536 B2

‘(,—-200
902 Receive packets from host remote desktop
\//\ manager for a frame update for the remote
desktop
ZOQ//\ Determine that packets are missing
Perform update? Yes
Send a request for Display the
the missing frame update
210j\ packets to host _using the
remote desktop image Q*OCKS
manager 208 in the
“[\ received
i packets
without the
Receive the mlssbllnogoklsmage
missing packets

and display the
212 frame update using
\/\ image blocks in
the just received
missing packets
and the previously
received packets

FIG. 2

U.S. Patent Jul. 14, 2015 Sheet 3 of 7 US 9,081,536 B2

SOg/f\ Determine a compression scheme used

lossy Dictionary

window?

Use smaller image chunks

206 Render frame ~ across the dictionary or
updates without window such that a lost packet
\/(\ missing image 30§/f\ only invalidates the

blocks compression for a smaller
region of the frame update

FIG. 3

U.S. Patent Jul. 14, 2015 Sheet 4 of 7 US 9,081,536 B2

in i
[O
< <
N ™
|
o)
“o" =
<t T
T
™
R 0|
& S ~
= <
(4o
| |
L
3 3]
O \ oo
= =
=
| |
n
| |
. /
| |
u
T
S S
#
o~ <
o o
=3 <

U.S. Patent Jul. 14, 2015 Sheet 5 of 7 US 9,081,536 B2

I
1
I
I
I
I
I
1
I
I
I
I
I
1
I
I
\

I
I
I
I
|
|
I
I
|
|
1

I
I
|
I
|
|
I
|

)
[

I
I
I
I
|
|
I
|
|
J
I

U.S. Patent Jul. 14, 2015 Sheet 6 of 7 US 9,081,536 B2

4=
=
o Lo
T S O
CNQD
—_ o
—
|
o~
3 1
|
O
f ©
i
-
o
%)
N
I N
(o |
(e [eo
O [
=
iy
<
o
o
olo (aa]
- oo ©
(Je) [
o) O .
CL‘ =
- —
- (s
© — L
L
4 o
™ o Lo
X /V T8
S S e
©o " o
o
. —
1)
n
Y
IC [ee
o~ S
O
=
n
/1 :
|
g .
o
T
o=

US 9,081,536 B2

Sheet 7 of 7

Jul. 14, 2015

U.S. Patent

wesJls
Pass9.4dWooa(

80L
JoSeuel

Uo 1 $89.4dwWoos(

L 91

weaJ3s
passaJduoy

4y
JoSeuew

|elpsws. 1SOH

0L
Jageuew

Uo I $$9.40WoY

01
JaJapusy
1USAD
19)08d SSO7
S -
oIT
JoSeuew |
90UBW.0449(suolloe
|Blpawsy
90L ¥0L
19A1900. | Ja11lusuel] |————
19084 wea.3s 10984 weasJls
pessa.duod passaJduos
guipn|oul
T S19)084 1T

J98euew dolysep ajowsd jusi|n

voT

901A8p UI (9

Jageuew dolysep ajowsd 1Soy

20T
1504

US 9,081,536 B2

1
PERFORMANCE ENHANCEMENT IN
VIRTUAL DESKTOP INFRASTRUCTURE
(VDD

CLAIM OF PRIORITY

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/663,175 filed on Oct. 29, 2012, now U.S. Pat.
No. 8,886,695, the content of which is incorporated by refer-
ence herein its entirety.

BACKGROUND

Virtual desktop infrastructure (VDI) refers to a system that
uses remote desktop protocols (hereinafter referred to as
“remoting protocols™) that allow a user’s client device to
connect to a remote desktop. The term, “remote desktop”
refers to an instance of a user computer system or virtual
machine that runs remotely to the user, e.g., in a remote
datacenter. The term, “remote desktop” may also be used to
refer to the user interface presented to a user The remote
desktop is running on a host, which receives commands from
the client device and updates an image of a display of the
remote desktop to the client device (referred to as “display
remoting”) based on the commands. Updates of the image of
the remote desktop on the user’s client device should be in
real-time based on the input received from the client device
and the activity of the operating system and the applications
running on the remote desktop.

Due to the real-time nature of display remoting, remoting
protocols need to deliver a good user experience even in the
presence of hostile network environments. When the remote
desktop and the client device are connected by a high-speed
local area network (LAN) where an abundance of bandwidth
is available, low round-trip latencies exist with close to zero
packet loss. In this environment, the remoting protocols
deliver a high-quality user experience. However, users may
not always connect in an ideal environment. For example,
users are more frequently connecting to remote desktops over
high latency, high loss wide area networks (WANs) via
mobile and/or distributed environments. In one example,
users may connect from remote branch offices to remote
desktops housed in a central data center or cloud, or users may
connect via wireless networks (e.g., WiFi), that are often
public networks, which may be congested. These environ-
ments result in network conditions that include high rates of
packet loss and high latency, which may not be conducive to
delivering a high-quality user experience.

Prior generation remoting protocols used Transmission
Control Protocol (TCP) to handle transport of image blocks to
update an image of the desktop graphical user interface (GUI)
on the client device. TCP is a reliable protocol that handled
the reliable transport of the image blocks to the client device.
However, more recent remoting protocols use other network
protocols, such as User Datagram Protocol (UDP), that are
not reliable. In this case, the remoting protocol is responsible
to ensure reliable transport of the image blocks.

In one example, a series of packets may carry image blocks
for an update of an image of the desktop GUI generated by the
remote desktop. In the course of sending the packets from the
host to the client device, some packets may be lost resulting in
the client device not having complete set of image blocks for
the update. Even though remoting protocols leverage UDP,
the remoting protocols typically re-transmit each and every
lost data packet. As a result, when packet loss occurs, the
remoting protocol prevents the client device from rendering
an update to the image of the desktop GUI until resolving the

10

20

25

40

45

2

lost packet problem. For example, the client device typically
waits some period to determine if the packet is delayed,
determines the packet is lost, notifies the remote desktop of
the lost packet, and then waits for the remote desktop to
resend the lost packet.

In low latency networks, the remote desktop can send lost
packets promptly, and the user experience is most likely not
adversely affected. However, in high latency networks, the
time taken to resolve the lost packet problem may affect the
user experience as the client device delays the update until the
problem is resolved. This impacts the maximum rate that the
client device can deliver to update images of the desktop GUI,
which impacts user experience, such as causing video render-
ing, scroll operations, window drag operations to look slow
and jumpy.

SUMMARY

In one embodiment, a method displays images from a
remote desktop of a desktop GUI on a client device. The
method receives a plurality of image blocks for a frame
update of an image of the desktop GUI being displayed on the
client device. The remote desktop is being run on a host. The
client device determines that one or more missing image
blocks have not been received for the frame update and deter-
mines if the frame update should be performed without the
one or more missing image blocks. If the frame update of the
desktop GUI at the client should be performed without the
one or more missing image blocks, the client device performs
the frame update of the desktop GUI using the plurality of
image blocks without using the one or more missing image
blocks.

In one embodiment, a host determines a plurality of image
blocks for the frame update of an image of the desktop GUI
being displayed on the client device. The host compresses the
plurality of image blocks into a compressed stream where the
compressed plurality of image blocks in the compressed
stream are of a variable length. Portions of the compressed
stream are included in a plurality of packets. The host also
determines a plurality of markers indicating positional infor-
mation for compressed image blocks in the compressed
stream and sends the plurality of packets and the plurality of
markers to the client device. The client device uses the plu-
rality of markers to resynchronize compressed image blocks
in the compressed stream with a position in the frame update
when packet loss occurs.

The following detailed description and accompanying
drawings provide a better understanding of the nature and
advantages of particular embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a simplified system of a remote desktop
environment for processing lost packets according to one
embodiment.

FIG. 2 depicts a simplified flowchart for performing a
frame update according to one embodiment.

FIG. 3 depicts a simplified flowchart of a method for per-
forming frame updates using different compression schemes
according to one embodiment.

FIG. 4 shows the relationship between an uncompressed
stream and a compressed stream according to one embodi-
ment.

FIG. 5A shows the frame update sequence of image blocks.

FIG. 5B shows the relationship between decompressed
image blocks for the frame update to positions in the frame.

US 9,081,536 B2

3

FIG. 6A shows markers that are included in packets
according to one embodiment.

FIG. 6B depicts an example of resynchronizing com-
pressed stream using an index according to one embodiment.

FIG. 7 depicts a more detailed example of a host remote
desktop manager and a client remote desktop manager
according to one embodiment.

DETAILED DESCRIPTION

In the following description, for purposes of explanation,
numerous examples and specific details are set forth in order
to provide a thorough understanding of particular embodi-
ments. Particular embodiments as defined by the claims may
include some or all of the features in these examples alone or
in combination with other features described below, and may
further include modifications and equivalents of the features
and concepts described herein.

FIG. 1 depicts a simplified system 100 of a remote desktop
environment for processing lost packets according to one
embodiment. System 100 includes a host 102 and a client
device 104 that communicate through a network 106. Host
102 and client device 104 use a remoting protocol to display
an image at client device 104 of a desktop GUI (not shown)
that is provided the remote desktop running on host 102.
Although particular embodiments are described with respect
to a Virtual Desktop Infrastructure (VDI), particular embodi-
ments may be used in other environments, such as systems
that update information on remote computers. For example,
client device 104 updates frames of the image on a display
110. Each consecutive image may be referred to as a “frame”
and a frame update is the display of a new image. It should be
noted that each frame may be regarded being composed of
multiple independent sub-components to allow parallel
encode/decode and improve encoding efficiencies. Loss in
any particular sub-component would impact large portions of
the image of the desktop GUI. Accordingly, the term frame
may mean both frame and sub-component/sub-frame con-
structs.

In one embodiment, remote desktop 108 may be executing
applications in a virtualized environment, such as in a virtual
machine (VM) (not shown) running on host 102. A person of
skill in the art would appreciate how to implement remote
desktop 108 in the virtualized environment. However,
although a virtualized environment is described, remote desk-
top 108 may be running in a non-virtualized environment. For
example, other environments where a remote application run-
ning on a computer system transmits image data for frame
updates to client device 104 may be used.

The running of remote desktop 108 on host 102 and the
display of an image of the desktop GUI on client device 104
may be referred to display remoting. In display remoting,
client remote desktop manager 112 sends input/output (1/O)
commands from peripheral devices associated with client
device 104 to remote desktop 108. A host remote desktop
manager 114 processes the input/output commands and sends
image blocks for a frame update to client remote desktop
manager 112. Client remote desktop manager 112 then
updates an image of the desktop GUI on display 110 using the
image blocks. For example, a user may use a mouse to drag a
window on the desktop GUI. Client remote desktop manager
112 detects the movement and sends an I/O command for the
movement. Host remote desktop manager 114 processes the
1/0 command causing the window to move across an image of
the desktop GUI. Host remote desktop manager 114 then
sends frame updates to client remote desktop manager 112,
which updates the image of the desktop GUI being displayed

10

20

25

30

35

40

45

55

4

ondisplay 110 to show the movement. In some examples, the
entire desktop image is not updated in response to the window
drag; rather, the remoting protocol determines which sub-
regions of the desktop image has changed as a result of this
operation and only updates these changed regions.

In one embodiment, host remote desktop manager 114
sends a frame update in multiple packets. Each packet may
include a set of image blocks where each image block may
correspond to a portion of the frame update to be displayed on
display 110. If all of the packets are received, client remote
desktop manager 112 uses the image blocks to perform a
frame update of the image of the desktop GUI on display 110.

In some cases, client remote desktop manager 112 may not
receive all of the packets for the frame update, which results
in missing image blocks needed to construct the frame. Even
though packet loss has been encountered, particular embodi-
ments allow client remote desktop manager 112 to intelli-
gently determine whether or not to perform the frame update
even though image blocks may be missing for the frame. For
example, the remoting protocol allows client device 104 to
tolerate packet loss without the requirement for retransmis-
sion of lost packets, which allows client device 104 to per-
form the frame update with missing image blocks. As will be
described in more detail below, when a performance manager
116 of client remote desktop manager 112 determines that
some packets have been lost for a frame update, performance
manager 116 may indicate to client remote desktop manager
112 that the image should be updated using the received
image blocks without requesting retransmission of the lost
packets. This allows client device 104 to display the frame
update without delay. Performance manager 116 may balance
different criteria to provide a good user experience when
determining whether to perform a frame update in light of
packet loss. For example, although the frame update may
include missing information, if the frame update corresponds
to a sequence of a fleeting duration, such as high frequency
screen updates, the missing image blocks will be replaced a
fraction of a second later by a subsequent frame update. Thus,
the user may not notice the missing image blocks in the frame
update. Additionally, the user will not see any delay due to
client remote desktop manager 112 waiting for retransmis-
sion of lost packets. Also, instead of ignoring the missing
image blocks, client remote desktop manager 112 may
extrapolate the missing image blocks in the frame update
from received image blocks or may insert information (e.g., a
black color) in the missing image blocks to reduce the notice-
ability of missing information, or may just leave the blocks
unchanged from the prior frame.

FIG. 2 depicts a simplified flowchart 200 for performing a
frame update according to one embodiment. At 202, client
remote desktop manager 112 receives packets from host
remote desktop manager 114 for a frame update for the desk-
top GUI. Each packet may include a set of image blocks. At
204, performance manager 116 determines that packets are
missing. For example, performance manager 116 may wait a
certain time period to determine if the packets are delayed or
lost. After the time period passes, performance manager 116
determines that the packets are lost. In one embodiment,
packets sent from host remote desktop manager 114 include
sequence numbers. For example, the network protocol, such
as UDP, inserts sequence numbers in each packet to identify
each packet in the sequence. Performance manager 116 can
then determine if any packets have been lost based on the
sequence numbers. For example, if packets 1,2, 4,5, 6,7, 8,
and 9 have been received, then after a certain time period,
performance manager 116 may determine that packet #3 has
been lost.

US 9,081,536 B2

5

At 206, performance manager 116 determines if client
remote desktop manager 112 should perform the frame
update without the missing image blocks. For example, per-
formance manager 116 determines if the missing image
blocks from the missing packets cause image corruption over
athreshold. To determine the image corruption, performance
manager 116 may quantify the effects of the missing image
blocks on the frame update. For example, performance man-
ager 116 may limit the maximum number/percentage of miss-
ing image blocks in a frame update. If the image corruption
(e.g., number of missing image blocks) is below a threshold,
then performance manager 116 determines that the image is
acceptable to display without the missing image blocks. Per-
formance manager 116 may also consider other criteria, such
as if the frame update is part of a high frequency frame
updates. If the frame update should be performed, at 208,
client remote desktop manager 112 displays the frame update
using the image blocks in the received packets without the
missing image blocks. If the missing image blocks in fact turn
out to be merely delayed, client remote desktop manager 112
may optionally insert these image blocks into the updated
frame. The decision whether to update the frame with any late
arriving blocks may be based on a variety of factors, including
the frame update frequency.

Ifperformance manager 116 determines that the corruption
(e.g., number of missing image blocks) is over a threshold,
then performance manager 116 causes client remote desktop
manager 112 to pause and not display the frame update while
requesting the missing image blocks. At 210, client remote
desktop manager 112 sends a request for the missing packets
to host remote desktop manager 114. In this case, host remote
desktop manager 114 can then resend the missing packets. At
212, client remote desktop manager 112 receives the missing
packets and displays the frame update using image blocks in
the just received missing packets and the previously received
packets. As discussed above, a delay results due to the retrans-
mission of the missing packets. However, client remote desk-
top manager 112 performs a frame update that does not
include missing image blocks thus displaying a better image.

When client remote desktop manager 112 displayed the
image without the missing image blocks, performance man-
ager 116 may send a message informing host remote desktop
manager 114 of the packet loss event. In the event of perfor-
mance manager 116 requesting the missing packets as
described at 210, host remote desktop manager 114 is already
informed of the packet loss event. However, client remote
desktop manager 112 may additionally send a message
informing host remote desktop manager 114 of the packet
loss event even if the retransmission has been requested. By
informing remote desktop 108 of the packet loss event, host
remote desktop manager 114 may take remedial action when
applicable. For example, if the missing image blocks in con-
secutive updated frames have remained static across many
updates (e.g., the missing image blocks are in the same loca-
tion or sub-region), host remote desktop manager 114 may
provide client remote desktop manager 112 with the missing
image blocks to display with the frame update. In this case,
host remote desktop manager 114 may not want client remote
desktop manager 112 to display multiple frame updates with
the same missing image blocks, which may become notice-
able to a user. However, if the missing image blocks corre-
spond to a sequence of high frequency screen updates, host
remote desktop manager 114 may ignore the missing image
blocks as host remote desktop manager 114 will replace the
missing image blocks in a subsequent frame update. Other
remedial actions may also be taken, such as host remote
desktop manager 114 may generate an alert for the packet loss

5

10

15

20

25

30

40

45

50

55

60

6

event. Further, if the losses relate to the final frame sequence
of high frequency updates (e.g. the final frame of a video),
host remote desktop manager 114 may cause the retransmis-
sion of the missing image blocks, even if they were not
requested. In this case, performance manager 114 may have
assumed that the corrupted frame would be rapidly replaced
by a subsequent frame update and displayed the corrupted
image, but the ending of the video means an updated frame is
not sent. Thus, host remote desktop manager 114 may resolve
the corruption by sending the missing image blocks. Alterna-
tively, performance manager 114 may itself request retrans-
mission if the duration of the corruption is longer than ini-
tially predicted (i.e., a frame update is not received after a
certain threshold for the region).

The image data needed for a frame update is typically
compressed at remote desktop 108 and sent in a compressed
stream to client device 104. Client remote desktop manager
112 then decompresses the compressed stream. In some
cases, the decompression of a frame (or even a significant
chunk of the frame) should not be dependent on all packets
being present. That is, client remote desktop manager 112
should be able to decompress each image block (or small
group of image blocks) in isolation. For example, if one
packet including a set of image blocks is lost for a frame
update, client remote desktop manager 112 should still be
able to decompress other image blocks included in received
packets for the frame update. If client remote desktop man-
ager 112 cannot decompress the other image blocks, then
displaying the frame update without the missing image
blocks would not be possible. In one example, client remote
desktop manager 112 can decompress image blocks in isola-
tion when host remote desktop manager 114 uses lossy com-
pression. However, host remote desktop manager 114 may
use dictionary/windowed schemes for lossless compression
that require all image blocks (and hence all packets) to be
present from the stream to decompress the image blocks for a
frame. Such lossless compression algorithms, such as
DEFLATE, used in the popular portable network graphics
(PNG) graphics image format, are well known such that the
details thereof need not be presented here. Particular embodi-
ments described herein address the different compression
(lossy and lossless) schemes differently.

FIG. 3 depicts a simplified flowchart 300 of a method for
performing frame updates using different compression
schemes according to one embodiment. Particular embodi-
ments may make the following adjustments to the remoting
protocol when the lost packet tolerance scheme described
above is used. At 302, host remote desktop manager 114
determines a compression scheme to use. For example, host
remote desktop manager 114 may use different compression
schemes at different times, such as the compression scheme
may depend on the type of data being transmitted (e.g., video
data).

At 304, host remote desktop manager 114 determines if a
lossy compression scheme or a dictionary/windowed is being
used. Although these two compression schemes are
described, other compression schemes may be appreciated. In
one embodiment, client remote desktop manager 112 may
perform frame updates with missing image blocks only when
a lossy compression scheme is being used. Thus, if lossy
compression is not being used, the remoting protocol causes
client remote desktop manager 112 to send requests for miss-
ing image blocks when packet loss occurs. Even though client
remote desktop manager 112 may perform the frame updates
without requiring missing image blocks to be received only
when lossy compression is performed, this may not be overly
restrictive as host remote desktop manager 114 may use lossy

US 9,081,536 B2

7

compression with activities that are conducive to displaying
frame updates without missing image blocks. For example,
high frequency frame update activities, such as video play-
back, may use lossy compression a majority of the time and
are conducive to displaying frame updates with missing
image blocks because the missing image blocks may be
replaced in a subsequent frame update moments later.
Accordingly, at 306, if host remote desktop manager 114 is
using a lossy compression scheme, client remote desktop
manager 112 renders frame updates without missing image
blocks subject to the restrictions described above.

When a dictionary/windowed compression scheme is
being used, all the image blocks in the dictionary or window
cannot be decompressed if a missing image block occurs
within the dictionary or window. This is because the decom-
pression depends on information from all of the image blocks
in the window. Thus, at 308, host remote desktop manager
114 may use smaller image chunks across the dictionary or
window such that a lost packet only invalidates the compres-
sion for a smaller region of the frame update. In this case, the
compression that can be achieved may be adversely impacted
as lower compression ratios result because generally a
smaller window means less compression can be obtained.
However, the benefit is that particular embodiments improve
user experience by allowing client remote desktop manager
112 to display frame updates without delay at the expense of
increased bandwidth utilization. Also, the remoting protocol
would already sub-divide a frame update into multiple
regions most likely when host remote desktop manager 114
uses a dictionary/windowed compression scheme. Thus,
these existing regions are just being broken into smaller sub-
regions to minimize the size of the region disrupted by packet
loss event.

Particular embodiments may switch compression schemes
based on the type of image data host remote desktop manager
114 sends. For example, when video is being sent, host
remote desktop manager 114 may use lossy compression and
allow for the lost packet tolerance scheme to be performed by
client remote desktop manager 112 as described in 306. Addi-
tionally, host remote desktop manager 114 may switch the
compression scheme to another compression scheme that is
more compatible with the lost packet tolerance scheme.

For client remote desktop manager 112 to decompress the
compressed stream and correctly reconstruct a frame for the
frame update, client remote desktop manager 112 needs to
determine image block boundaries in a compressed stream
that is only partly available due to packet loss. FIG. 4 shows
the relationship between an uncompressed stream 402 and a
compressed stream 404 according to one embodiment. In
uncompressed stream 402, image blocks are a uniform size.
For example, image blocks 406-1-406-7 are of the same size.
However, when compressed, compressed stream 404
includes compressed image blocks 408-1-408-7 that vary in
length depending on the compression achieved for each spe-
cific image block 406-1-406-». For example, some image
blocks 406 may be compressed to images blocks 408 of a
smaller size if the compression achieved is greater. As seen,
corresponding compressed image blocks 408-1, 408-2, . . .
408-r are different sizes and image boundaries do not corre-
spond to image boundaries of uncompressed image blocks
406-1, 406-2, . . . 406-n.

Client remote desktop manager 112 needs to decompress
compressed stream 404 and determine where to display are
uncompressed image blocks in the frame. If no packet loss
exists, once client remote desktop manager 112 has received
the entire compressed representation of the frame, client
remote desktop manager 112 can parse the compressed

10

15

20

25

30

35

40

45

50

55

60

65

8

stream from start to finish. Each symbol/unit/chunk is pro-
cessed in sequence as it is encountered. Because client remote
desktop manager 112 parses the stream from start to finish,
client remote desktop manager 112 can determine where to
display the image blocks in the frame. For example, the
compressed stream may start at a top left position of the frame
and include data in a pattern shown in FIG. 5A. As client
remote desktop manager 112 decompresses the compressed
stream, client remote desktop manager 112 knows that each
decompressed image block is displayed sequentially from the
last decompressed image block in the frame update. However,
when packet loss occurs, client remote desktop manager 112
cannot process the compressed stream sequentially from start
to finish. Rather, missing image blocks exist in the decom-
pressed stream. Due to the missing image blocks, client
remote desktop manager 112 cannot determine where image
blocks in the decompressed stream should be displayed in the
frame because client remote desktop manager 112 cannot
resynchronize the uncompressed stream 404 with a position
in the frame after missing packets are encountered because of
the irregular size of compressed image blocks 408.

As shown in FIG. 5B, at 502, client remote desktop man-
ager 112 has decompressed image blocks for the frame
update from compressed stream 404. These decompressed
image blocks may correspond to positions in a frame as
shown. Then, client remote desktop manager 112 image
encounters a lost packet such that missing image blocks result
in compressed stream 404. The missing image blocks are
shown conceptually at 504. At 506, client remote desktop
manager 112 decompresses image blocks from packets
received after the packet loss. However, client remote desktop
manager 112 does not know where to place the decompressed
image blocks in the frame. Because the variable size of image
blocks in compressed stream 404, client remote desktop man-
ager 112 cannot determine how many image blocks have been
lost.

To allow client remote desktop manager 112 to resynchro-
nize compressed stream 404 with a position in the frame,
particular embodiments may provide markers that allow cli-
ent remote desktop manager 112 to determine position infor-
mation for image blocks that client remote desktop manager
112 decompresses. In one embodiment, host remote desktop
manager 114 may mark compressed stream 404 at periodic
intervals with markers, such as unique symbols, that allow
client remote desktop manager 112 to re-synchronize com-
pressed stream 404 following a packet loss that induces dis-
continuity in compressed stream 404. The frequency of the
markers may dictate how quickly client remote desktop man-
ager 112 can perform re-synchronization after a packet loss.
For example, once a packet is lost, client remote desktop
manager 112 cannot display any image blocks until a marker
is encountered indicating a position of an image block in
compressed stream 404. Thus, even though client remote
desktop manager 112 has received some image blocks after
the lost packet, client remote desktop manager 112 would not
know where those image blocks are displayed in the frame
until client remote desktop manager 112 receives another
marker. The remoting protocol may balance between the
desire to rapidly re-synchronize and limit the region invali-
dated in the frame with the overhead introduced by transmit-
ting markers.

In one example, FIG. 6 A shows markers 604-1-604-7 that
are included in packets 602-1-602-n according to one
embodiment. In one embodiment, host remote desktop man-
ager 114 may align image block boundaries with packets 602
such that image blocks do not span multiple packets 602.
Then, in a header or the first few bytes of each packet 602, a

US 9,081,536 B2

9

marker 604 is inserted. Marker 604 may include positional
information for the compressed blocks included in packet
602. For example, packets 602 include x,y coordinates to
where to place the compressed image blocks in the frame. In
one example, each packet 602 includes the x,y coordinate for
the first image block in each packet. Client remote desktop
manager 112 can then determine the positional information
based on the x,y coordinate for the first image block for the
rest of the image blocks in packet 602. That is, if the first
image block starts at the first position of a row or slice of the
frame, the rest of the image blocks in the packet fill out the
row. In other embodiments, X,y coordinates may be included
for more than the first image block, such as for every image
block in packet 602.

As shown, a marker 604 may be included in each packet
602 that is sent. Thus, if, for example, a packet 602-2 is lost,
when client remote desktop manager 112 receives packet
602-3, client remote desktop manager 112 uses marker 604-3
to re-synchronize compressed stream 404 with a position in
the frame. For example, client remote desktop manager 112
knows where the uncompressed image blocks in packet 604-3
should be placed in the frame based on marker 604-3. In this
case, client remote desktop manager 112 may determine the
X,y position in the frame and then display image blocks
sequentially from that position.

Inefficiencies may be introduced by alignment of image
block boundaries with packet boundaries and the inclusion of
markers 604. However, these inefficiencies may have a neg-
ligible impact on total bandwidth. However, the benefit of
allowing client remote desktop manager 112 to rapidly re-
synchronize due to packet loss may outweigh the inefficiency.

FIG. 6B depicts another example of resynchronizing com-
pressed stream 404 using an index according to one embodi-
ment. In one embodiment, at the start of each frame, host
remote desktop manager 114 includes a marker that allows
client remote desktop manager 112 to correctly align and
reconstruct a partial uncompressed stream 404. For example,
an index packet 606 is included in the stream of packets 608,
and includes index information, which may indicate where
image blocks in each packet 608-1-608- for a frame update
should be positioned. In one example, index packet 606 may
indicate positional information for the first image block in
each packet 608 that will be sent for a frame update. Thus, if
packet 608-2 is lost, client remote desktop manager 112 may
determine the positional information for packet 608-3 from
index packet 606. For example, due to packets 608 including
sequence numbers, when client remote desktop manager 112
receives packet 602-3, client remote desktop manager 112
knows that packet 602-3 is the third packet in the sequence.
Client remote desktop manager 112 then determines the posi-
tional information for the third packet in index packet 606.
Once determining the positional information, client remote
desktop manager 112 then can display image blocks from
packet 608-3 starting at an X,y position in the frame as indi-
cated by the positional information.

Given the importance of index packet 606, host remote
desktop manager 114 may send index packet 606 multiple
times. For example, at 610, host remote desktop manager 114
has resent index packet 606. Also, other methods for ensuring
that client remote desktop manager 112 receives index pack-
ets 606 may be used. For example, a reliable protocol, such as
TCP, may be used to send index packet 606. An unreliable
protocol, such as UDP, may still be used to send packets 608,
however.

FIG. 7 depicts a more detailed example of host remote
desktop manager 114 and client remote desktop manager 112
according to one embodiment. At host 102, a compression

25

40

45

55

10

manager 702 receives image blocks for a frame update and
compresses the image blocks into a compressed stream. A
packet transmitter 704 receives the compressed stream and
includes portions of the compressed stream in a sequence of
packets that is sent to client device 104.

A packet receiver 706 of client device 104 receives the
packets. As discussed above, packets may be lost. Perfor-
mance manager 116 analyzes the packets that are lost to
determine if the frame update should be performed without
the missing image blocks from the lost packets. Meanwhile,
packet receiver 706 may extract the compressed stream in the
packets and send the compressed stream to a decompression
manager 708. Decompression manager 708 decompresses
the compressed stream into a decompressed stream of image
blocks.

A renderer 710 performs the frame update. As discussed
above, renderer 710 may perform the frame update without
the missing image blocks. In this case, performance manager
116 may send a signal to renderer 710 to indicate whether
renderer 710 should render an updated frame without the
missing image blocks. Also, renderer 710 may receive mark-
ers in addition to the decompressed stream from decompres-
sion manager 708. Renderer 710 uses the markers to deter-
mine where to display image blocks in the event of missing
image blocks in the decompressed stream as discussed above.
Renderer 710 then displays an updated frame when appli-
cable.

When lost packets result, as discussed above, performance
manager 116 sends a message to host remote desktop man-
ager 114 indicating the loss of packets. A host remedial man-
ager 712 analyzes the lost packets to determine if any reme-
dial actions should be performed. For example, missing
image blocks may be resent if the missing image blocks occur
in the same area over a sequence of frame updates.

Inone embodiment, host remote desktop manager 114 may
reduce the packet size during periods of high packet loss to
reduce the localized impact of a packet loss event. For
example, a packet loss affects a smaller number of image
blocks that would be missing for a frame update. Although
this increases the number of packets that needs to be sent,
which may increase the total number of packet losses, the
losses may result in smaller sized and potentially less visually
impacted missing parts of the frame update.

By making the compression stream more modular, addi-
tional parallelism can be introduced into the decompression
process and also allow for the decompression process to
commence before the entire frame or slice of the frame is
received.

Accordingly, particular embodiments allow client device
104 to intelligently determine how to process a frame update
in the event of a packet loss. By allowing client device 104 to
update a frame with missing image blocks, improvements in
user experience may result.

The various embodiments described herein may employ
various computer-implemented operations involving data
stored in computer systems. For example, these operations
may require physical manipulation of physical quantities—
usually, though not necessarily, these quantities may take the
form of electrical or magnetic signals, where they or repre-
sentations of them are capable of being stored, transferred,
combined, compared, or otherwise manipulated. Further,
such manipulations are often referred to in terms, such as
producing, identifying, determining, or comparing. Any
operations described herein that form part of one or more
embodiments may be useful machine operations. In addition,
one or more embodiments also relate to a device or an appa-
ratus for performing these operations. The apparatus may be

US 9,081,536 B2

11

specially constructed for specific required purposes, or it may
be a general purpose computer selectively activated or con-
figured by a computer program stored in the computer. In
particular, various general purpose machines may be used
with computer programs written in accordance with the
teachings herein, or it may be more convenient to construct a
more specialized apparatus to perform the required opera-
tions. The various embodiments described herein may be
practiced with other computer system configurations includ-
ing hand-held devices, microprocessor systems, micropro-
cessor-based or programmable consumer electronics, mini-
computers, mainframe computers, and the like.

One or more embodiments may be implemented as one or
more computer programs or as one or more computer pro-
gram modules embodied in one or more non-transitory com-
puter readable storage media. The term non-transitory com-
puter readable storage medium refers to any data storage
device that can store data which can thereafter be input to a
computer system. The non-transitory computer readable
media may be based on any existing or subsequently devel-
oped technology for embodying computer programs in a
manner that enables them to be read by a computer. Examples
of'a non-transitory computer readable medium include a hard
drive, network attached storage (NAS), read-only memory,
random-access memory (e.g., a flash memory device), a CD
(Compact Discs)—CD-ROM, a CD-R, or a CD-RW, a DVD
(Digital Versatile Disc), a magnetic tape, and other optical
and non-optical data storage devices. The non-transitory
computer readable medium can also be distributed over a
network coupled computer system so that the computer read-
able code is stored and executed in a distributed fashion.

In addition, while described virtualization methods have
generally assumed that virtual machines present interfaces
consistent with a particular hardware system, persons of ordi-
nary skill in the art will recognize that the methods described
may be used in conjunction with virtualizations that do not
correspond directly to any particular hardware system. Virtu-
alization systems in accordance with the various embodi-
ments, implemented as hosted embodiments, non-hosted
embodiments or as embodiments that tend to blur distinctions
between the two, are all envisioned. Furthermore, various
virtualization operations may be wholly or partially imple-
mented in hardware.

Many variations, modifications, additions, and improve-
ments are possible, regardless the degree of virtualization.
The virtualization software can therefore include components
of a host, console, or guest operating system that performs
virtualization functions. Plural instances may be provided for
components, operations or structures described herein as a
single instance. Finally, boundaries between various compo-
nents, operations and data stores are somewhat arbitrary, and
particular operations are illustrated in the context of specific
illustrative configurations. Other allocations of functionality
are envisioned and may fall within the scope of the invention
(s). In general, structures and functionality presented as sepa-
rate components in exemplary configurations may be imple-
mented as a combined structure or component. Similarly,
structures and functionality presented as a single component
may be implemented as separate components.

Asused in the description herein and throughout the claims
that follow, “a”, “an”, and “the” includes plural references
unless the context clearly dictates otherwise. Also, as used in
the description herein and throughout the claims that follow,
the meaning of “in” includes “in”” and “on” unless the context
clearly dictates otherwise.

The above description illustrates various embodiments
along with examples of how aspects of particular embodi-

10

20

25

30

35

40

45

50

55

60

12

ments may be implemented. The above examples and
embodiments should not be deemed to be the only embodi-
ments, and are presented to illustrate the flexibility and advan-
tages of particular embodiments as defined by the following
claims. Based on the above disclosure and the following
claims, other arrangements, embodiments, implementations
and equivalents may be employed without departing from the
scope hereof as defined by the claims.

What is claimed is:

1. A computing device comprising:

one or more processors; and

storage medium storing a sequence of instructions that are

executed by the one or more processors to:

receive, over a network from a remote host server, a
plurality of packets containing image information for
a frame update of a graphical user interface (GUI) to
be displayed by the computing device;

detect that one or more packets in the plurality of packets
were lost during transmission of the plurality of pack-
ets from the remote host server;

determine whether the frame update corresponds to a
sequence of frames of a fleeting duration; and

in response to determining that the frame update corre-
sponds to the sequence of frames of the fleeting dura-
tion, render the frame update that is missing at least a
portion of the image information contained in the one
or more packets that were lost during the transmis-
sion.

2. The computing device of claim 1, wherein rendering the
frame update that is missing at least a portion of the image
information contained in the one or more packets that were
lost further comprises at least one of:

extrapolating the missing image information from the

received image information contained in the received
plurality of packets;

inserting image information into the frame update to

reduce noticeability of the missing image information;
or

leaving image information from a previous frame

unchanged during the frame update.

3. The computing device of claim 1, wherein detecting that
the one or more packets were lost further comprises:

waiting for a predetermined period of time to determine

whether the one or more packets were delayed or lost;
and

determining that the one or more packets were lost after the

predetermined period of time has passed.

4. The computing device of claim 1, wherein detecting that
the one or more packets were lost further comprises:

reading one or more sequence identifiers contained in the

plurality of packets; and

determining that the one or more packets were lost based

on the sequence identifiers.

5. The computing device of claim 1, wherein render the
frame update that is missing at least a portion of the image
information further comprises:

determining whether amount of the missing image infor-

mation is below a threshold; and

rendering the frame update without the missing image

information if the amount of the missing information is
below the threshold.

6. The computing device of claim 5, wherein determining
whether the frame update corresponds to the sequence of
frames of the fleeting duration further comprises:

US 9,081,536 B2

13

pausing the rendering of the frame update and requesting
the missing image information from the remote host
server if the amount of the missing information is above
the threshold.

7. The computing device of claim 1, wherein determining
whether the frame update corresponds to the sequence of
frames of the fleeting duration further comprises:

determining that the frame update is part of a sequence of

high frequency screen updates wherein a frame that is to
be updated by the frame update is likely to be replaced
by a subsequent frame update within a predetermined
period of time.

8. A computer implemented method for performing a
frame update of a graphical user interface (GUI), the method
comprising:

receiving, over a network from a remote host server, a

plurality of packets containing image information for
the frame update of the graphical user interface (GUI) to
be displayed by a client device;

detecting that one or more packets in the plurality of pack-

ets were lost during transmission of the plurality of
packets from the remote host server;

determining whether the frame update corresponds to a

sequence of frames of a fleeting duration; and

in response to determining that the frame update corre-

sponds to the sequence of frames of the fleeting duration,
rendering the frame update that is missing at least a
portion of the image information contained in the one or
more packets that were lost during the transmission.

9. The computer implemented method of claim 8, wherein
rendering the frame update that is missing at least a portion of
the image information contained in the one or more packets
that were lost further comprises at least one of:

extrapolating the missing image information from the

received image information contained in the received
plurality of packets;

inserting image information into the frame update to

reduce noticeability of the missing image information;
or

leaving image information from a previous frame

unchanged during the frame update.

10. The computer implemented method of claim 8,
wherein detecting that the one or more packets were lost
further comprises:

waiting for a predetermined period of time to determine

whether the one or more packets were delayed or lost;
and

determining that the one or more packets were lost after the

predetermined period of time has passed.

11. The computer implemented method of claim 8,
wherein detecting that the one or more packets were lost
further comprises:

reading one or more sequence identifiers contained in the

plurality of packets; and

determining that the one or more packets were lost based

on the sequence identifiers.

12. The computer implemented method of claim 8,
wherein render the frame update that is missing at least a
portion of the image information further comprises:

determining whether amount of the missing image infor-

mation is below a threshold; and

rendering the frame update without the missing image

information if the amount of the missing information is
below the threshold.

20

25

35

40

45

55

14

13. The computer implemented method of claim 12,
wherein determining whether the frame update corresponds
to the sequence of frames of the fleeting duration further
comprises:

pausing the rendering of the frame update and requesting

the missing image information from the remote host
server if the amount of the missing information is above
the threshold.

14. The computer implemented method of claim 8,
wherein determining whether the frame update corresponds
to the sequence of frames of the fleeting duration further
comprises:

determining that the frame update is part of a sequence of

high frequency screen updates wherein a frame that is to
be updated by the frame update is likely to be replaced
by a subsequent frame update within a predetermined
period of time.

15. A non-transitory computer readable storage medium
storing a set of instructions executed by one or more proces-
sors to cause the one or more processors to perform a set of
operations, comprising:

receiving, over a network from a remote host server, a

plurality of packets containing image information for
the frame update of the graphical user interface (GUI) to
be displayed by a client device;

detecting that one or more packets in the plurality of pack-

ets were lost during transmission of the plurality of
packets from the remote host server;

determining whether the frame update corresponds to a

sequence of frames of a fleeting duration; and

in response to determining that the frame update corre-

sponds to the sequence of frames of the fleeting duration,
rendering the frame update that is missing at least a
portion of the image information contained in the one or
more packets that were lost during the transmission.

16. The non-transitory computer readable storage medium
of claim 15, wherein rendering the frame update that is miss-
ing at least a portion of the image information contained in the
one or more packets that were lost further comprises at least
one of:

extrapolating the missing image information from the

received image information contained in the received
plurality of packets;

inserting image information into the frame update to

reduce noticeability of the missing image information;
or

leaving image information from a previous frame

unchanged during the frame update.

17. The non-transitory computer readable storage medium
of claim 15, wherein detecting that the one or more packets
were lost further comprises:

waiting for a predetermined period of time to determine

whether the one or more packets were delayed or lost;
and

determining that the one or more packets were lost after the

predetermined period of time has passed.

18. The non-transitory computer readable storage medium
of claim 15, wherein detecting that the one or more packets
were lost further comprises:

reading one or more sequence identifiers contained in the

plurality of packets; and

determining that the one or more packets were lost based

on the sequence identifiers.

19. The non-transitory computer readable storage medium
of claim 15, wherein render the frame update that is missing
at least a portion of the image information further comprises:

US 9,081,536 B2
15

determining whether amount of the missing image infor-
mation is below a threshold; and
rendering the frame update without the missing image
information if the amount of the missing information is
below the threshold. 5
20. The non-transitory computer readable storage medium
of claim 15, wherein determining whether the frame update
corresponds to the sequence of frames of the fleeting duration
further comprises:
determining that the frame update is part of a sequence of 10
high frequency screen updates wherein a frame that is to
be updated by the frame update is likely to be replaced
by a subsequent frame update within a predetermined
period of time.
15

